

	AQA Physics (8463) from 2016 Topics P4.1. Energy			
Topic	Student Checklist	R	Α	G
4.1.1	Define a system as an object or group of objects and state examples of changes in the	n	Α_	۳
Energy	way energy is stored in a system			
changes	Describe how all the energy changes involved in an energy transfer and calculate			
in a	o. o.			
system,	relative changes in energy when the heat, work done or flow of charge in a system changes			
and the	-			
ways	Use calculations to show on a common scale how energy in a system is redistributed			
energy is	Calculate the kinetic energy of an object by recalling and applying the equation: $[E_k = \frac{1}{2} mv^2]$			
stored	Calculate the amount of elastic potential energy stored in a stretched spring by			
before	applying, but not recalling, the equation: $[E_e = \frac{1}{2}ke^2]$			
and after	Calculate the amount of gravitational potential energy gained by an object raised			
such	above ground level by recalling and applying, the equation: $[E_e = mgh]$			
changes	Calculate the amount of energy stored in or released from a system as its temperature			
	changes by applying, but not recalling, the equation: $[\Delta E = mc\Delta\theta]$			
	Define the term 'specific heat capacity'			
	Required practical 1: investigation to determine the specific heat capacity of one or			
	more materials.			
	Define power as the rate at which energy is transferred or the rate at which work is			
	done and the watt as an energy transfer of 1 joule per second			
	Calculate power by recalling and applying the equations: $[P = E/t \& P = W/t]$			
	Explain, using examples, how two systems transferring the same amount of energy			
	can differ in power output due to the time taken			
4.1.2	State that energy can be transferred usefully, stored or dissipated, but cannot be			
Conserva	created or destroyed and so the total energy in a system does not change			
tion and	Explain that only some of the energy in a system is usefully transferred, with the rest			
dissipati	'wasted', giving examples of how this wasted energy can be reduced			
on	Explain ways of reducing unwanted energy transfers and the relationship between			
of	thermal conductivity and energy transferred			
energy	Describe how the rate of cooling of a building is affected by the thickness and thermal			
	conductivity of its walls			
	Required practical 2: investigate the effectiveness of different materials as thermal			
	insulators and the factors that may affect the thermal insulation properties of a			
	material.			\vdash
	Calculate efficiency by recalling and applying the equation: [efficiency = useful power			
	output / total power input]			
	HT ONLY: Suggest and explain ways to increase the efficiency of an intended energy transfer			
4.1.3	List the main renewable and non-renewable energy resources and define what a			
National	renewable energy resource is			
and	Compare ways that different energy resources are used, including uses in transport,			
global	electricity generation and heating			
energy	Explain why some energy resources are more reliable than others, explaining patterns			
resource	and trends in their use			
s	Evaluate the use of different energy resources, taking into account any ethical and			
	environmental issues which may arise			
	Justify the use of energy resources, with reference to both environmental issues and			
	the limitations imposed by political, social, ethical or economic considerations			

	AQA Physics (8463) from 2016 Topics P4.2. Electricity			
Topic	Student Checklist	R	Α	G
4.2.1	Draw and interpret circuit diagrams, including all common circuit symbols			
Current,	Define electric current as the rate of flow of electrical charge around a closed circuit			
potentia	Calculate charge and current by recalling and applying the formula: [Q = It]			
I	Explain that current is caused by a source of potential difference and it has the same			
differen	value at any point in a single closed loop of a circuit			
ce and	Describe and apply the idea that the greater the resistance of a component, the			
resistanc	smaller the current for a given potential difference (p.d.) across the component			
е	Calculate current, potential difference or resistance by recalling and applying the equation: [V = IR]			
	Required practical 3: Use circuit diagrams to set up and check circuits to investigate the factors affecting the resistance of electrical circuits			
	Define an ohmic conductor	_		
	Explain the resistance of components such as lamps, diodes, thermistors and LDRs and sketch/interpret IV graphs of their characteristic electrical behaviour			
	Explain how to measure the resistance of a component by drawing an appropriate circuit diagram using correct circuit symbols			
	Required practical 4: use circuit diagrams to construct appropriate circuits to investigate the I–V characteristics of a variety of circuit elements			
4.2.2	Show by calculation and explanation that components in series have the same	\vdash		
Series	current passing through them			
and	Show by calculation and explanation that components connected in parallel have the			
parallel	same the potential difference across each of them			
circuits	Calculate the total resistance of two components in series as the sum of the			
	resistance of each component using the equation: $[R_{total} = R_1 + R_2]$			
	Explain qualitatively why adding resistors in series increases the total resistance whilst adding resistors in parallel decreases the total resistance			
	Solve problems for circuits which include resistors in series using the concept of equivalent resistance			
4.2.3	Explain the difference between direct and alternating voltage and current, stating			
Domesti	what UK mains is			
c uses	Identify and describe the function of each wire in a three-core cable connected to			
and	the mains			
safety	State that the potential difference between the live wire and earth (0 V) is about 230			
	V and that both neutral wires and our bodies are at, or close to, earth potential (0 V)			
	Explain that a live wire may be dangerous even when a switch in the mains circuit is open by explaining the danger of providing any connection between the live wire and earth			

		$\overline{}$	
4.2.4	Explain how the power transfer in any circuit device is related to the potential		
Energy	difference across it and the current through it	\vdash	
transfers	Calculate power by recalling and applying the equations: $[P = VI]$ and $[P = I^2R]$	igsquare	
	Describe how appliances transfer energy to the kinetic energy of motors or the		
	thermal energy of heating devices		
	Calculate and explain the amount of energy transferred by electrical work by		
	recalling and applying the equations: [E = Pt] and [E = QV]		
	Explain how the power of a circuit device is related to the potential difference across		
	it, the current through it and the energy transferred over a given time.		
	Describe, with examples, the relationship between the power ratings for domestic		
	electrical appliances and the changes in stored energy when they are in use		
	Identify the National Grid as a system of cables and transformers linking power		
	stations to consumers		
	Explain why the National Grid system is an efficient way to transfer energy, with		
	reference to change in potential difference reducing current		
4.2.5	PHY ONLY: Describe the production of static electricity by the rubbing of insulating		
Static	surfaces		
electricit	PHY ONLY: Describe evidence that charged objects exert forces of attraction or		
У	repulsion on one another when not in contact		
	PHY ONLY: Explain how the transfer of electrons between objects can explain the		
	phenomenon of static electricity, including how insulators are charged and sparks are		
	created		
	PHY ONLY: Draw the electric field pattern for an isolated charged sphere		
	PHY ONLY: Explain the concept of an electric field and the decrease in its strength as		
	the distance from it increases		
	PHY ONLY: Explain how the concept of an electric field helps to Explain the		
	non-contact force between charged objects as well as other electrostatic phenomena		
	such as sparking		
-	· · · · · · · · · · · · · · · · · · ·		_

	AQA Physics (8463) from 2016 Topics P4.3. Particle model of matter			
TOPIC	Student Checklist	R	Α	G
4.3.1	Calculate the density of a material by recalling and applying the equation: [$\rho = m/V$]			
Changes	Recognise/draw simple diagrams to model the difference between solids, liquids and			
of state	gases			
and the	Use the particle model to explain the properties of different states of matter and			
particle	differences in the density of materials			
model	Required practical 5: use appropriate apparatus to make and record the			
	measurements needed to determine the densities of regular and irregular solid objects and liquids			
	Recall and describe the names of the processes by which substances change state			
	Use the particle model to explain why a change of state is reversible and affects the properties of a substance, but not its mass			
4.3.2	State that the internal energy of a system is stored in the atoms and molecules that			
Internal	make up the system			
energy	Explain that internal energy is the total kinetic energy and potential energy of all the			
and	particles in a system			
energy	Calculate the change in thermal energy by applying but not recalling the equation			
transfer	$[\Delta E = m c \Delta \theta]$			
S	Calculate the specific latent heat of fusion/vaporisation by applying, but not recalling, the equation: [E = mL]			
	Interpret and draw heating and cooling graphs that include changes of state			
	Distinguish between specific heat capacity and specific latent heat			
4.3.3	Explain why the molecules of a gas are in constant random motion and that the higher			
Particle	the temperature of a gas, the greater the particles' average kinetic energy			
model	Explain, with reference to the particle model, the effect of changing the temperature			
and	of a gas held at constant volume on its pressure			
pressure	Calculate the change in the pressure of a gas or the volume of a gas (a fixed mass held			
	at constant temperature) when either the pressure or volume is increased or			
	decreased			
	PHY ONLY: Explain, with reference to the particle model, how increasing the volume in			
	which a gas is contained can lead to a decrease in pressure when the temperature is			
	constant	<u> </u>		
	PHY ONLY: Calculate the pressure for a fixed mass of gas held at a constant			
	temperature by applying, but not recalling, the equation: [pV = constant]			
	PHY & HT ONLY: Explain how work done on an enclosed gas can lead to an increase			
	in the temperature of the gas, as in a bicycle pump	1	I	l

	AQA Physics (8463) from 2016 Topics P4.4. Atomic structure			
TOPIC	Student Checklist	R	Α	G
4.4.1	Describe the basic structure of an atom and how the distance of the charged particles			
Atom	vary with the absorption or emission of electromagnetic radiation			
s and	Define electrons, neutrons, protons, isotopes and ions			
isoto	Relate differences between isotopes to differences in conventional representations of			
pes	their identities, charges and masses			
	Describe how the atomic model has changed over time due to new experimental			
	evidence, inc discovery of the atom and scattering experiments (inc the work of James			
	Chadwick)			
4.4.2	Describe and apply the idea that the activity of a radioactive source is the rate at			
Atom	which its unstable nuclei decay, measured in Becquerel (Bq) by a Geiger-Muller tube			
s and	Describe the penetration through materials, the range in air and the ionising power for			
nucle	alpha particles, beta particles and gamma rays			
ar	Apply knowledge of the uses of radiation to evaluate the best sources of radiation to			
radiat	use in a given situation			
ion	Use the names and symbols of common nuclei and particles to complete balanced			
	nuclear equations, by balancing the atomic numbers and mass numbers			
	Define half-life of a radioactive isotope			
	HT ONLY: Determine the half-life of a radioactive isotope from given information and			
	calculate the net decline, expressed as a ratio, in a radioactive emission after a given number of half-lives			
	Compare the hazards associated with contamination and irradiation and outline			
	suitable precautions taken to protect against any hazard the radioactive sources may			
	present			
	Discuss the importance of publishing the findings of studies into the effects of			
	radiation on humans and sharing findings with other scientists so that they can be			
	checked by peer review			
4.4.3	PHY ONLY: State, giving examples, that background radiation is caused by natural and			
Hazar	man-made sources and that the level of radiation may be affected by occupation			
ds	and/or location			
and	PHY ONLY: Explain the relationship between the instability and half-life of radioactive			
uses	isotopes and why the hazards associated with radioactive material differ according to			
of	the half-life involved			
radio	PHY ONLY: Describe and evaluate the uses of nuclear radiation in exploration of			
active	internal organs and controlling or destroying unwanted tissue		L	L_
emiss	PHY ONLY: Evaluate the perceived risks of using nuclear radiation in relation to given			
ions	data and consequences			
and	PHY ONLY: Describe nuclear fission			
of	PHY ONLY: Draw/interpret diagrams representing nuclear fission and how a chain			
backg	reaction may occur			
round	PHY ONLY: Describe nuclear fusion			
radiat				
ion		1		