

	AQA Physics (8463) from 2016 Topics P4.5. Forces			
Торіс	Student Checklist	R	Α	G
4.5.1	Identify and describe scalar quantities and vector quantities			
Force	Identify and give examples of forces as contact or non-contact forces			
s and	Describe the interaction between two objects and the force produced on each as a			
their	vector			
inter	Describe weight and explain that its magnitude at a point depends on the gravitational			
actio	field strength			
ns	Calculate weight by recalling and using the equation: [W = mg]			
	Represent the weight of an object as acting at a single point which is referred to as the			
	object's 'centre of mass'			
	Calculate the resultant of two forces that act in a straight line			
	HT ONLY: describe examples of the forces acting on an isolated object or system			
	HT ONLY: Use free body diagrams to qualitatively describe examples where several			
	forces act on an object and explain how that leads to a single resultant force or no			
	force			
	HT ONLY: Use free body diagrams and accurate vector diagrams to scale, to resolve			
	multiple forces and show magnitude and direction of the resultant			
	HT ONLY: Use vector diagrams to illustrate resolution of forces, equilibrium situations			
	and determine the resultant of two forces, to include both magnitude and direction			
4.5.2	Describe energy transfers involved when work is done and calculate the work done by			
Work	recalling and using the equation: [W = Fs]			
done	Describe what a joule is and state what the joule is derived from			
and	Convert between newton-metres and joules.			
ener	Explain why work done against the frictional forces acting on an object causes a rise in			
gy	the temperature of the object			
trans				
fer 4.5.3	Describe eventse of the forces in closed in stratching, handing or comparing on			
4.5.5 Force	Describe examples of the forces involved in stretching, bending or compressing an object			
s and	Explain why, to change the shape of an object (by stretching, bending or compressing),			
elasti	more than one force has to be applied – this is limited to stationary objects only			
city	Describe the difference between elastic deformation and inelastic deformation caused			
,	by stretching forces			
	Describe the extension of an elastic object below the limit of proportionality and			
	calculate it by recalling and applying the equation: $[F = ke]$			
	Explain why a change in the shape of an object only happens when more than one			
	force is applied			
	Describe and interpret data from an investigation to explain possible causes of a linear			
	and non-linear relationship between force and extension			
	Calculate work done in stretching (or compressing) a spring (up to the limit of			
	proportionality) by applying, but not recalling, the equation: $[E_e = \frac{1}{ke^2}]$			
	Required practical 6: investigate the relationship between force and extension for a			
	spring.			
4.5.4	PHY ONLY: State that a body in equilibrium must experience equal sums of clockwise			
Mom	and anticlockwise moments, recall and apply the equation: [M = Fd]			
ents,	PHY ONLY: Apply the idea that a body in equilibrium experiences an equal total of			
lever	clockwise and anti-clockwise moments about any pivot			
s and	PHY ONLY: Explain why the distance, d, must be taken as the perpendicular distance			
gears	from the line of action of the force to the pivot			
	PHY ONLY: Explain how levers and gears transmit the rotational effects of forces	1		

4.5.5	PHY ONLY: Describe a fluid as either a liquid or a gas and explain that the pressure in a		
Press	fluid causes a force to act at right angles (normal) to the surface of its container	\vdash	
ure	PHY ONLY: Recall and apply the equation: [p = F/A]	\square	\square
and	PHY & HT ONLY: Explain why the pressure at a point in a fluid increases with the height		
press	of the column of fluid above and calculate differences in pressure in a liquid by applying		
ure	[p=h ρ g]		
differ	PHY & HT ONLY: Describe up thrust an object and explain why the density of the fluid		
ence	has an effect on the up thrust experienced by an object submerged in it		
s in	PHY & HT ONLY: Explain why an object floats or sinks, with reference to its weight,		
fluid	volume and the up thrust it experiences		
	PHY ONLY: Describe a simple model of the Earth's atmosphere and of atmospheric		
	pressure, explaining why atmospheric pressure varies with height above a surface		
4.5.6	Define distance and displacement and explain why they are scalar or vector quantities		
Force	Express a displacement in terms of both the magnitude and direction		
s and	Explain that the speed at which a person can walk, run or cycle depends on a number of		
moti	factors and recall some typical speeds for walking, running, cycling		
on	Make measurements of distance and time and then calculate speeds of objects in		
	calculating average speed for non-uniform motion	\square	
	Explain why the speed of wind and of sound through air varies and calculate speed by		
	recalling and applying the equation: [s = v t]		
	Explain the vector-scalar distinction as it applies to displacement, distance, velocity and		
	speed		
	HT ONLY: Explain qualitatively, with examples, that motion in a circle involves constant		
	speed but changing velocity		
	Represent an object moving along a straight line using a distance-time graph, describing		
	its motion and calculating its speed from the graph's gradient	\vdash	
	Draw distance-time graphs from measurements and extract and interpret lines and		
	slopes of distance-time graphs,	\vdash	
	Describe an object which is slowing down as having a negative acceleration and estimate		
	the magnitude of everyday accelerations	\vdash	
	Calculate the average acceleration of an object by recalling and applying the equation: [$a = \Delta v/t$]		
	Represent motion using velocity-time graphs, finding the acceleration from its gradient		
	and distance travelled from the area underneath		
	HT ONLY: Interpret enclosed areas in velocity-time graphs to determine distance		
	travelled (or displacement)		
	HT ONLY: Measure, when appropriate, the area under a velocity- time graph by		
	counting square		
	Apply, but not recall, the equation: $[v^2 - u^2 = 2as]$		
	PHY ONLY: Draw and interpret velocity-time graphs for objects that reach terminal		
	velocity	\square	\square
	PHY ONLY: Interpret and explain the changing motion of an object in terms of the forces		
	acting on it		
	PHY ONLY: Explain how an object falling from rest through a fluid due to gravity reaches		
	its terminal velocity	\vdash	$\dashv \dashv$
	Explain the motion of an object moving with a uniform velocity and identify that forces		
	must be in effect if its velocity is changing, by stating and applying Newton's First Law	\vdash	+
	Define and apply Newton's second law relating to the acceleration of an object	\vdash	+
	Recall and apply the equation: [F = ma]	\vdash	+
	HT ONLY: Describe what inertia is and give a definition	\vdash	+
	Estimate the speed, accelerations and forces of large vehicles involved in everyday road		
	transport	\vdash	+
	Required practical 7: investigate the effect of varying the force on the acceleration of an abject of constant many and the effect of varying the many of an abject on the		
	object of constant mass, and the effect of varying the mass of an object on the		
	acceleration	┝┼╋	+
	Apply Newton's Third Law to examples of equilibrium situations		

Describe factors that can affect a driver's reaction time
Explain methods used to measure human reaction times and recall typical results
Interpret and evaluate measurements from simple methods to measure the different reaction times of students
Evaluate the effect of various factors on thinking distance based on given data
PHY ONLY: Estimate the distance required for an emergency stop in a vehicle over a range of typical speeds
PHY ONLY: Interpret graphs relating speed to stopping distance for a range of vehicles
State typical reaction times and describe how reaction time (and therefore stopping distance) can be affected by different factors
Explain methods used to measure human reaction times and take, interpret and evaluate measurements of the reaction times of students
Explain how the braking distance of a vehicle can be affected by different factors, including implications for road safety
Explain how a braking force applied to the wheel does work to reduce the vehicle's kinetic energy and increases the temperature of the brakes
Explain and apply the idea that a greater braking force causes a larger deceleration and explain how this might be dangerous for drivers
HT ONLY: Estimate the forces involved in the deceleration of road vehicles

4.5.7	HT ONLY: Calculate momentum by recalling and applying the equation: [p = mv]	
Mom	HT ONLY: Explain and apply the idea that, in a closed system, the total momentum	
entu	before an event is equal to the total momentum after the event	
m	HT ONLY: Describe examples of momentum in a collision	
	PHY & HT ONLY: Complete conservation of momentum calculations involving two objects	
	PHY & HT ONLY: Explain that when a force acts on an object that is moving, or able to move, a change in momentum occurs	
	PHY & HT ONLY: Calculate a force applied to an object, or the change in momentum it causes, by applying but not recalling the equation: [$F = m \Delta v / \Delta t$]	
	PHY & HT ONLY: Explain that an increased force delivers an increased rate of change of momentum	
	PHY & HT ONLY: Apply the idea of rate of change of momentum to explain safety features such as air bags, seat belts, helmets and cushioned surfaces	

	AQA Physics (8463) from 2016 Topics P4.6. Waves				
Торіс	Student Checklist	R	Α	G	
4.6.1	Describe waves as either transverse or longitudinal, defining these waves in terms of				
Wav	the direction of their oscillation and energy transfer and giving examples of each				
es in	Define waves as transfers of energy from one place to another, carrying information				
air,	Define amplitude, wavelength, frequency, period and wave speed and Identify them				
fluid	where appropriate on diagrams				
s and	State examples of methods of measuring wave speeds in different media and Identify				
solid	the suitability of apparatus of measuring frequency and wavelength				
S	Calculate wave speed, frequency or wavelength by applying, but not recalling, the equation: $[v = f \lambda]$ and calculate wave period by recalling and applying the equation: $[T = 1/f]$				
	Identify amplitude and wavelength from given diagrams				
	Describe a method to measure the speed of sound waves in air				
	Describe a method to measure the speed of ripples on a water surface				
	PHY ONLY: Demonstrate how changes in velocity, frequency and wavelength are				
	inter-related in the transmission of sound waves from one medium to another				
	Required practical 8: make observations to identify the suitability of apparatus to measure the frequency, wavelength and speed of waves in a ripple tank and waves in a solid				
	PHY ONLY: Discuss the importance of understanding both mechanical and				
	electromagnetic waves by giving examples, such as designing comfortable and safe				
	structures and technologies				
	PHY ONLY: Describe a wave's ability to be reflected, absorbed or transmitted at the boundary between two different materials				
	PHY ONLY: Draw the reflection of a wave at a surface by constructing ray diagrams				
	Required practical 9 (physics only): investigate the reflection of light by different types of surface and the refraction of light by different substances.				
	PHY & HT ONLY: Describe, with examples, processes which convert wave disturbances between sound waves and vibrations in solids				
	PHY & HT ONLY: Explain why such processes only work over a limited frequency range and the relevance of this to the range of human hearing, which is from 20 Hz to 20 kHz				
	PHY & HT ONLY: Define ultrasound waves and explain how these are used to form images of internal structures in both medical and industrial imaging				
	PHY & HT ONLY: Compare the two types of seismic wave produced by earthquakes with reference to the media they can travel in and the evidence they provide of the structure of the Earth				
	PHY & HT ONLY: Describe how echo sounding using high frequency sound waves is used to detect objects in deep water and measure water depth				

		г	
.6.2	Describe what electromagnetic waves are and explain how they are grouped	+	-
lect	List the groups of electromagnetic waves in order of wavelength	$ \vdash $	
oma	Explain that because our eyes only detect a limited range of electromagnetic waves,		
neti	they can only detect visible light	\vdash	_
C	HT ONLY: Explain how different wavelengths of electromagnetic radiation are		
ave s	reflected, refracted, absorbed or transmitted differently by different substances and		
3	types of surface	+	
	Illustrate the refraction of a wave at the boundary between two different media by		
	constructing ray diagrams	+	_
	HT ONLY: Describe what refraction is due to and illustrate this using wave front		
	diagrams	+	
	Required practical activity 10: investigate how the amount of infrared radiation		
	absorbed or radiated by a surface depends on the nature of that surface.	+	-
	HT ONLY: Explain how radio waves can be produced by oscillations in electrical		
	circuits, or absorbed by electrical circuits	+	\rightarrow
	Explain that changes in atoms and the nuclei of atoms can result in electromagnetic		
	waves being generated or absorbed over a wide frequency range	┢──┼	_
	State examples of the dangers of each group of electromagnetic radiation and discuss		
	the effects of radiation as depending on the type of radiation and the size of the dose	+	_
	State examples of the uses of each group of electromagnetic radiation, explaining why		
	each type of electromagnetic wave is suitable for its applications	\vdash	+
	PHY ONLY: State that a lens forms an image by refracting light and that the distance from the lens to the principal focus is called the focal length		
	PHY ONLY: Explain that images produced by a convex lens can be either real or virtual,		_
	but those produced by a concave lens are always virtual		
	PHY ONLY: Construct ray diagrams for both convex and concave lenses		
	PHY ONLY: Calculate magnification as a ratio with no units by applying, but not	+	
	recalling, the formula: [magnification = image height / object height]		
	PHY ONLY: Explain how the colour of an object is related to the differential absorption,		+
	transmission and reflection of different wavelengths of light by the object		
	PHY ONLY: Describe the effect of viewing objects through filters or the effect on light of		-
	passing through filters and the difference between transparency and translucency		
	PHY ONLY: Explain why an opaque object has a particular colour, with reference to the		
	wavelengths emitted		
	PHY ONLY: State that all bodies, no matter what temperature, emit and absorb infrared		
	radiation and that the hotter the body, the more infrared radiation it radiates in a given		
	time		
	PHY ONLY: Describe a perfect black body as an object that absorbs all the radiation		
	incident on it and explain why it is the best possible emitter		
	PHY ONLY: Explain why when the temperature is increased, the intensity of every	\square	
	wavelength of radiation emitted increases, but the intensity of the shorter wavelengths		
	increases more rapidly		
	PHY & HT ONLY: Explain and apply the idea that the temperature of a body is related		Τ
	to the balance between incoming radiation absorbed and radiation emitted		
	PHY & HT ONLY: Describe how the temperature of the Earth as dependent on the		Τ
	rates of absorption and emission of radiation and draw and interpret diagrams that		
	show this		

AQA Physics (8463) from 2016 Topics P4.7. Magnetism and electromagnetism				
TOPIC	Student Checklist	R	Α	G
4.7.1	Describe the attraction and repulsion between unlike and like poles of			
Permanent	permanent magnets and explain the difference between permanent and induced			
and	magnets			
induced	Draw the magnetic field pattern of a bar magnet, showing how field strength and			
magnetism	direction are indicated and change from one point to another			
, magnetic	Explain how the behaviour of a magnetic compass is related to evidence that the			
forces and	core of the Earth must be magnetic			
fields	Describe how to plot the magnetic field pattern of a magnet using a compass			
4.7.2 The motor effect	State examples of how the magnetic effect of a current can be demonstrated and explain how a solenoid arrangement can increase the magnetic effect of the current			
	Draw the magnetic field pattern for a straight wire carrying a current and for a solenoid (showing the direction of the field)			
	<i>PHY ONLY: Interpret diagrams of electromagnetic devices in order to explain how they work</i>			
	HT ONLY: State and use Fleming's left-hand rule and explain what the size of the induced force depends on			
	HT ONLY: Calculate the force on a conductor carrying a current at right angles to a magnetic field by applying, but not recalling, the equation: [<i>F</i> = <i>BIL</i>]			
	HT ONLY: Explain how rotation is caused in an electric motor			
	PHY & HT ONLY: Explain how a moving-coil loudspeaker and headphones work			
4.7.3 Induced potential,	PHY & HT ONLY: Describe the principles of the generator effect, including the direction of induced current, effects of Lenz' Law and factors that increase induced p.d.			
transforme rs and the	PHY & HT ONLY: Explain how the generator effect is used in an alternator to generate a.c. and in a dynamo to generate d.c.			
National Grid	PHY & HT ONLY: Draw/interpret graphs of potential difference generated in the coil against time			
	PHY & HT ONLY: Explain how a moving-coil microphone works			
	PHY & HT ONLY: Explain how the effect of an alternating current in one coil inducing a current in another is used in transformers			
	PHY & HT ONLY: Explain how the ratio of the potential differences across the two coils depends on the ratio of the number of turns on each			
	PHY & HT ONLY: Apply the equation linking the p.d.s and number of turns in the two coils of a transformer to the currents and the power transfer			
	PHY & HT ONLY: Apply but not recalling the equations: [Vs × Is = Vp × Ip] and [vp / vs = np / ns] for transformers			

	AQA Physics (8463) from 2016 Topics P4.8. Space physics			
TOPIC	Student Checklist	R	Α	G
4.8.1	PHY ONLY: List the types of body that make up the solar system and describe our solar			
Solar	system as part of a galaxy			
system	PHY ONLY: Explain how stars are formed			
;	PHY ONLY: Describe the life cycle of a star the size of the Sun and of a star which is			
stabilit	much more massive than the Sun			
y of	PHY ONLY: Explain how fusion processes lead to the formation of new elements and			
orbital	how supernovas have allowed heavy elements to appear in later solar systems			
motio	PHY & HT ONLY: Explain that, for circular orbits, the force of gravity leads to a			
ns;	constantly changing velocity but unchanged speed			
satellit	PHY & HT ONLY: Explain that, for a stable orbit, the radius must change if the speed			
es	changes			
4.8.2	PHY ONLY: Explain, qualitatively, the red-shift of light from galaxies that are receding			
Red-sh	and how this red-shift changes with distance from Earth			
ift	PHY ONLY: Explain why the change of each galaxy's speed with distance is evidence of			
	an expanding universe			
	PHY ONLY: Explain how scientists are able to use observations to arrive at theories,			
	such as the Big Bang theory and discuss that there is still much about the universe			
	that is not understood			