F	Forces and	1. Scalar quantities have a magnitude (size) only and can be represented by a line.
Forces	their	 Examples of Scalar quantities include speed, distance, time, mass, energy and power.
	interactions	 Vector quantities have a magnitude and direction and are represented by an arrow, showing the direction of the vector.
		4. Examples of Vector quantities include velocity, acceleration, force, momentum,
		weight, gravitational field strength and displacement.
		5. Displacement is defined a distance without a change of direction.
	Forces	6. A force can be a push a pull or a twist and changes the shape or motion of an object.
	between	 Forces work in pairs known as action reaction pairs.
	objects	8. Contact forces are only able to act when the objects are physically touching.
		 Examples of contact forces include, thrust, upthrust, lift, reaction, tension, friction and drag forces (air and water resistance)
		10. Non-contact forces are able to act at a distance.
		11. Examples of non-contact forces include weight, magnetic and electrostatic force.
		12. Scale diagrams can be used to show the size of forces in free body force diagrams, the
		size of the arrow represents the size of the force.
	Weight and	13. Weight is the force action on an object due to gravity.
	Gravity	14. The magnitude of gravity on the earth is given as 9.8N/kg
	Gravity	15. Everything near the earth experiences gravity and weight due to the proximity to
		earth
		16. The weight of an object is given as weight (N) = mass (kg) x gravitational field
		strength(N/kg)
		17. The weight of an object is said to act from the objects centre of mass
		18. Weight is measure in Newton's using a calibrated spring balance called a
		Newtonmeter
	Resultant	19. A number of forces acting on an object may be replaced by a single force that has the
	force	same effect as all the original forces. This is known as resultant force.
		20. Resultant force is calculated by adding forces in the same direction and subtracting
		forces in the opposite direction.
		21. A single force can be calculated using Pythagoras theorem when the forces are at
		right angles. Using parallelograms of forces when they are at any other angle.
		22. Resultant force diagrams must be drawn to scale and using arrows.
		23. A single force can also be resolved to give two forces acting at right angles to each
		other. Often known as the horizontal and vertical component.
	Friction and	24. Friction and drag forces oppose motion.
	Drag	25. Friction forces are between solid surfaces and increase as the mass of the object
	_	increases.
		26. Drag forces, (air resistance and water resistance) are caused by the collision of the
		particles in the medium the object is moving through with the object.
	Work done	27. When a force causes and object to move through a distance work is done on the
	and energy	object.
		28. One joule of work is done when one newton of force causes and object to move 1
		metre.
		29. Work done (J) = force (N) x distance (moved along the line of action of the force) (m)

	1	
	Forces and	30. An object can be changed shape if more than force is applied to it.
	elasticity	31. A stretching force puts an object under tension and a squashing force puts an object under tension.
		32. An object is elastic if it returns to its original shape when the forces deforming are removed.
		33. If an object reaches its elastic limit then it will no longer return to its original shape,
		this is known as inelastic deformation
		34. The extension of an elastic object is directly proportional to the force applied,
		provided the limit of proportionality is not exceeded.
		35. This is given by the equation, force $(N) = spring constant (N/m) x extension (m)$
		36. A force that stretches or compresses a spring does work and elastic potential energy
		is stored. Provided the elastic limit has not been met.
Waves	General	37. Waves transfer energy without a transfer of matter, there are two type mechanical
av	wave	and electromagnetic
es	properties	38. Mechanical waves are vibrations that travel through a medium (a substance) and
		include water waves, sound waves, waves on a spring or rope and seismic waves
		39. Electromagnetic waves are able to travel through a vacuum at the speed of light, 3 x
		10 ⁸ m/s and include light, radiowaves and microwaves.
		40. In transverse waves the oscillations are perpendicular to the direction of energy
		transfer. All electromagnetic waves are transverse
		41. In longitudinal waves the oscillations are parallel to the direction of energy transfer.
		42. Mechanical waves can be either transverse or longitudinal
		 In longitudinal waves there are areas of compression (squashing) and rarefaction (spreading out)
		44. The wavelength (λ) of a wave is the distance from one point on one wave to the same point on the next wave and is measured in meters.
		45. The amplitude of a wave is the maximum displacement of a point on the wave from
		its undisturbed position. Eg from the middle to the peak.
		46. The bigger the amplitude of the waves the more energy the waves carry.
		 Frequency is the number of waves that pass a fixed point every second and is measured in Hertz
		48. The (time) period of a wave is the time taken for each wave to pass a fixed point and
		is measured in seconds
		49. Frequency and time period are related with the following equation. (This equation is
		given to you.)
		time period (seconds) = $\frac{1}{frequency (Hertz)}$
		50. The speed of the wave is the distance travelled by each wave every second.
		51. The wave speed can be calculated using the following equation.
		wave speed $v = frequency f x$ wavelength λ
		m/s = Hertz Hz x metres

	D - (l : :	
Waves	Reflection and refraction	52. When waves such as water waves sound waves and light waves hit a solid surface they reflect at the same angle as the incident angle. This is called the law of reflection.
S	Terraction	 53. At the boundary between two materials waves can either be transmitted (pass through) or absorbed.
		54. When waves such as light cross a boundary between mediums they are refracted, this is because waves travel slower in more dense mediums and consequently bend
		towards the normal. 55. Refraction also occurs in water waves at different depths. Water waves travel slower
		in shallower water than they do in deeper water.
	Sound	56. Sound waves cannot travel in a vacuum as they require particles
	waves	57. Sound waves can travel in all three states of matter and travel the fastest in solids ass the particles are closest together
		58. The speed of a wave in solids can be measured using a frequency generator attached to a vibration generator and a length of string under tension to set up a standing wave.
		59. The speed of a wave in a liquid can be measured using a frequency generator attached to a paddle/dibber in a ripple tank. A slow motion camera can be used to measure the wavelength and frequency to determine the speed.
		60. The speed of a sound wave in air can be measured by making a sound and waiting to
		hear the echo off of a smooth solid object such a wall.
		61. On an oscilloscope the louder the sound the larger the amplitude of the wave, the
		higher the pitch of the sound the shorter the wavelength is.
		62. The human hearing range is between 20 – 20 000 Hz
	Electro-	63. The order of the electromagnetic spectrum from longest wavelength to shortest
	magnetic waves	wavelength is Radio waves, Microwaves, Infra-red, Visible light, Ultraviolet, X-rays, Gamma rays.
		64. Radio waves can be up to 1x 10 ⁴ m (10 km) they are used for sending sound and images in TVs and radios and for Bluetooth signals. They have the lowest frequency between 300 000 to 3000 million Hz
		65. Microwaves have shorter wavelengths than radio waves and higher frequencies. They are used for satellite TV, mobile phone signals and heating food in microwave ovens.
		 66. Infra-red waves are shorter in wavelength and higher in frequency than microwaves. Anything that is hot emits infrared radiation and they can be used for remote controls, body scanning, thermal imaging and optical fibres.
		67. Visible light can be divided into the seven colours of light. Red, Orange, Yellow, Green, Blue, Indigo, Violet. They are used in cameras and to be able to see.
		 68. UV radiation is shorter in wavelength and higher frequency than visible light. It can be used for tanning, security checks on money, finding body fluids at a crime scene.
		 69. X rays are shorter wavelength and higher frequency than UV rays It is used for detecting broken bones and airport security.
		 Gamma rays are the shortest wavelength and the highest frequency. They carry the most energy and can be used for sterilising medical equipment, treating cancer and
		detecting flaws in metals or concrete.
		71. Electromagnetic waves are given off when electrons are excited to higher energy
		levels and drop back down.

	1	1	
Waves	Communica		Radio waves, microwaves, infra-red and visible light can all be used to send messages
	tions and	73.	Infra-red and visible light can be used to send messages down optical fibres using a
es	harm		process called total internal reflection.
		74.	Radio waves can be used to send information signals around the world by bouncing
			them off the ionosphere. Radio waves can not pass through the atmosphere
		75.	Microwaves can be used to send information around the world by bouncing them of satellites.
		76.	Microwaves spread out less than radio waves and therefore give a higher quality
			signal. Hence the switch to digital signals in recent years.
		77.	Radio waves have different ranges. MW and LW over 100m are used for international
			broadcasts. FM are used in local broadcasts as they can travel only short distances.
		78.	Sound is converted into an AC current using a microphone, in a modulator this is
			causes an electron to become excited and emit radio waves. These are then received
			by a different radio mast and converted back into AC current which can be converted
			into sound by a speaker.
		79.	Microwaves, radio waves and infra-red radiation all pose a risk to health through
			heating. There is a strong correlation between mobile phones and cancer possible
			caused by heating molecules.
		80.	High frequency UV radiation, X-rays and Gamma rays are all ionising, this means they
			can cause mutations in DNA leading to cancer.
		81.	UV radiation is lowly penetrating and can be stopped using sunscreen and sun
			glasses. It can cause skin cancer and cataracts.
		82.	X-rays and Gamma rays are more penetrating and a film badge is used to monitor
			exposure.
			X rays and gamma rays are used in hospitals because the benefits outweigh the risks.
		84.	X rays can pass through soft tissues but are absorbed by denser tissues such as bones
			and teeth. These areas show up clear on a film.
	Infra-red	85.	Infra-red radiation is absorbed and emitted by all objects. The hotter they are the
	radiation		more infra-red radiation is given off.
			An object at a constant temperature emits as much infrared radiation as it absorbs.
		87.	The perfect absorber of radiation is called a black body. It is also by the same logic a
			perfect emitter of radiation.
		88.	Black matt surfaces are the best absorbers/emitters of infrared. White shiny surfaces
			are the worst absorbers/emitters of infrared.
		89.	This can be proved using a Leslie cube, or black and white cans with boiling water.

Ξ	Magnets	90. The three magnetic elements iron, cobalt and nickel. Steel is magnetic because it
lag		contains iron. They are magnetic because of the dipoles.
Magnetism		91. The poles of a magnet are north and south. The magnetic field flows from north to south.
m		92. Like poles repel, opposite poles attract.
_		93. The magnetic field can be determined by using a compass or iron filings.
		94. The stronger the magnetic field is, the closer the lines of the magnetic field are together. This is called magnetic flux density.
		95. There are three types of magnet: permanent magnets, induced magnets and
		electromagents.
		96. Steel is used to make permanent magnets because it does not easily lose its magnetic
		abilities. Iron is used to make electromagnets because it does not retain its magnetic ability for long.
		97. The earth also has a magnetic field similar to that of a bar magnet.
	Electro-	98. Any wire carrying a current generates a magnetic field. This can be predicted using
	magnets	the right had grip rule, where your thumb gives the direction of flow and your curled fingers give the direction of the field
		99. Wrapping the wire into a coil increases the strength of the magnetic field. This is called a solenoid.
		100. The electromagnetic field is strongest inside a solenoid and is similar to a bar magnet.
		101. The north pole of a solenoid is where the current is flowing in an anticlockwise
		direction. The south pole is where the current is flowing in a clockwise direction
		102. An electromagnet is made when that solenoid is wrapped around a soft iron core.
		103. Increasing the current makes the magnetic field stronger. Reversing the current
		reverses the direction of the magnetic field.
	The motor	104. When a current carrying wire is put in a magnetic field a force is experienced. This
	effect	causes one to move. This is called the motor effect.
		105. This movement can be predicted using Flemings left hand rule. The thu M b represents
		Movement, the First finger represents Field, the seCond finger represents Current.
		106. The size of the force can be increased by increasing the current or using a stronger
		magnet.
		107. The force is greatest when the wire is perpendicular to the magnetic field. There is no
		force when they two are parallel.
		108. The equation that links the force, magnetic field strength and current is
		force $F = magnetic flux density B x Current I x length l$
		Newtons $N = tesla T$ x amperes A x metres m
		109. An electric motor uses the motor effect by using a coil of wire. A split ring commutator
		keeps the motor spinning in the same direction. Because the current flows around the
		circuit. One side moves up and the other moves down in the magnetic field.