<u>Paper 1 Physics Fact Sheet – combined</u>

Italics – higher only

Ε	Energy	1. 10 stores of energy are chemical, thermal, kinetic, gravitational potential, elastic
n	0.	potential, nuclear, sound, light, electric and magnetic
		2. The unit of energy is Joules (J)
е		3. Energy can be transferred from one form to another but can't be created or
r		destroyed this is called conservation of energy
g		4. Energy input= useful energy+ wasted energy
y		5. Wasted energy is energy that is not in a useful format that is dissipating
_		6. Work done = force applied x distance moved
		7. Efficiency = useful energy transferred/ total energy supplied by the device
		8. Power = energy transferred to appliance / time taken for the energy to be transferred
		9. An energy transfer of 1 Joule per second is equal to a power of 1 Watt
		10. The more powerful the motor is the faster it moves a particular load.
	GPE KE	11. The equation for calculating potential energy = mass x gravitational field strength x
	Elastic	change of height
		12. The equation for calculating kinetic energy = ½ mass x speed ²
	Efficiency	13. Energy transfers are not 100% efficient and all efficiencies exist between 0-100%
		14. Useful energy is the energy transferred into the form of energy that is wanted
		15. Wasted energy is when energy is transferred into a form of energy that is not useful.
		This is often thermal store or sound store.
		16. To make an appliance more energy efficient you must reduce the amount of wasted
		energy. Eg by using lubrication, tightening loose or moving particles and reducing
		electrical resistance
	Conduction	17. Metals are the best conductors with a high energy transfer and non-metals are
	and	insulators with a low energy transfer.
	radiation	18. Convection is the movement of heat in fluids. The particles in the fluid become less
		dense when hot, rise and float. When cold the particles become denser and sink.
		19. All hot objects radiate heat in the form of waves. There is no need for particles.
		20. Houses are insulated to prevent energy loss and save energy resources and money.
		21. Double glazing prevents heat loss because they have a trapped layer of gas so both
		conduction and convection cycles are disrupted.
		22. Insulating panels are made of a foam and coated with foil, this reduces radiation,
		conduction and convection.
	Connaction	22. The specific heat consists of a substance in the agreement of an agree and discovering the
	Specific	23. The specific heat capacity of a substance is the amount of energy needed to raise the
	heat	temperature of 1kg of substance by 1 °C
	capacity	24. Specific heat capacity can be calculated experimentally by using an electrical heater to heat a kg block of metal.
	Enorgy	25. Electricity can be generated from by using to steam to turn a turbine which powers a
	Energy	generator
	resources	26. Coal, oil, gas (non – renewable fossil fuels) and biofuels (renewable) are burnt to heat
		water
		27. Nuclear sources such as uranium can be used to heat water (non- renewable)
		28. Geothermal energy, wind, solar, tidal, hydroelectric are renewable energy sources
		20. Geometrial energy, willu, solai, tidai, hydroelectric are reflewable effergy sources

		29. Coal, oil gas and biofuels all produce carbon dioxide or greenhouse gasses when burnt. The others do not.
E I e c t r i c .	The basics	 30. Each circuit has its own symbol that can be used to show the components in a circuit. 31. A battery is two or more cells put together 32. Current is the rate of flow of charge and is measured in amps Current (I) = charge (Q) ÷time (t) 33. Potential difference is measured in volts Potential difference (V)= energy transferred (E) ÷ charge (Q)
	Series circuits	34. In series circuits, current is the same, voltage is shared 35. In series circuits, resistance adds up
t y	Parallel circuits	36. In parallel circuits, current is shared between the branches and the sum of all branches is the total current, voltage is the same37. In parallel circuits, adding more resistors in a parallel circuit decreases the total resistance.
	Resistance	 38. Resistance is measured in Ohms (Ω) 39. Higher resistance, lower current, higher temperature 40. Total resistance adds up in a series circuit, it decreases in a parallel circuit 41. Resistance (Ω) = potential difference (V) ÷ current (Amps) 42. In a wire the as the current increases so does the voltage. Resistance is proportional 43. In a filament bulb resistance increases if the temperature increases 44. In a diode the forward resistance is low the backward resistance is high 45. A thermistors resistance decreases if its temperature increases 46. A LDR resistance decreases if the light intensity on it increases

E	Electricity in	47. Alternating current changes direction
	the home	48. Mains current is alternating, has a Potential Difference of 230 V and a frequency of 50
e		Hz
		49. Direct current flows in one direction only. From batteries and photovoltaic cells.
C		50. A 3 pin plug has three wires: brown is live, blue is neutral, green and yellow striped is
t		the earth wire
r		51. The earth wire protects against electric shocks if there is a fault
i		52. The fuse is attached to the live wire and melts if the current gets too high
С		53. The fuse ratings are 3, 5 and 13. Choose the fuse that is higher than the current
i		needed.
t	National	54. The national grid includes the power generation station, the cables and transformers
	Grid	that distribute electricity around the country
У		55. Step up transformers step up the voltage and therefore decrease the current. Step
С		down transformers step down voltage and therefore increase the current.
0		56. This reduces heat loss in the cables and increases efficiency
n		57. Using thick wires also increases efficiency as thicker wires have a lower electrical
t		resistance.
i		
n		
u		
е		
d		
	Power	58. The power of an electrical appliance is the rate at which electricity is transferred to
		the appliance or using the equation power = energy/time
		59. Power is also calculated by the equation power = current x potential difference
	Donaite	$60. \text{ Density } (\log \log^3) = \max (\log \log $
	Density	60. Density (kg/m³) = mass (kg) ÷ volume (m³)
		61. The density of a regular object can be calculated mathematically.
		62. Volume of an irregular object can be measured by submerging it in water and
		measuring the amount of water displaced
		63. Objects that have a lower density than water float.

M	States of	64. Particles in solids have strong attractive forces and are held in a fixed position. They
O	matter	do not compress or flow
		65. Particles in a liquid have moderate attractive forces they are always in contact but can
•		move about at random. They do not compress but can flow
е		66. Particles in a gas have weak attractive forces, they move about randomly can be
С		compressed and flow. They are the least dense.
u		67. When an object changes state the number of particles stays the same.
	Changes of	68. A pure substance has a specific melting and boiling point
e	state	69. Boiling occurs throughout a substance at its boiling point. Evaporation occurs from
		the surface of the liquid below the boiling point.
S		70. Changes of state are flat lines on a temperature time graph
а		71. Increasing the temperature increases the internal energy and allows a substance to
n		change state
d		72. Specific latent heat of vaporisation is the amount of energy needed to turn 1kg of a
m		substance from liquid to a gas
a		73. Specific latent heat of fusion is the amount of energy need to turn 1kg of a substance
		from a solid to a liquid.
t	Internal	74. The internal energy of a substance is determined by the kinetic energy of the
t	energy	particles and the potential energy of the particles
е	07	75. Gases have high internal energy as the particles have high kinetic energy and high
r		potential energy
		76. Increasing the temperature of the substance increase the internal energy
	Gas	77. The pressure of a gas is caused by random particles hitting the container or surfaces
	pressure	78. Increasing the temperature of a contained gas increases pressure as the particles
	pressure	move faster
		79. Brownian motion is the random movement of particles can be seen in smoke.
	Atoms	80. Positive nucleus (protons and neutrons) surrounded by negative electrons in shells,
	Atoms	discovered by Rutherford.
		81. Rutherford disproved plum pudding model by firing alpha particles at gold foil. The
		wide scattering pattern suggested the nucleus
		82. Electrons can jump to a higher energy level (further from the nucleus) with
		absorption of electromagnetic radiation
		10

R	Radiation	83. Alpha radiation α (a helium nuclei or loss of two protons and two neutrons) highly
а		ionising, low penetration, stopped by paper, range in air 5 cm
d		84. Alpha equations atomic mass decrease by 4, atomic number decrease by 2
:		85. Beta radiation β (electron formed when a neutron turns into a proton) mid ionising
•		ability and mid penetration, stopped by aluminium, range in air 1 metre
0		86. Beta equations atomic mass no change atomic number increase by 1
а		87. Gamma radiation γ (EMS wave) low ionising ability, high penetration, stopped by
С		several inches of lead or metres of concrete, range in air unlimited
t		88. Background radiation is low-level radiation.
i		89. Contamination us the unwanted presence of materials containing radioactive atoms
v		on other materials. The object is radioactive as long as the contaminant is in contact
, v		with it.
I		90. Irradiation is the process of exposing an object to nuclear radiation. It does not cause
t		the object to become radioactive.
У	Half life	91. Half-life is the amount of time it takes for the number of nuclei of the isotope to halve
		92. The number of atoms and count rate both half every half-life
		93. It can be read of a half-life graph
		94. The half-life of carbon 14 is used to age living things
	Use of	95. Radiation is harmful because it is ionising (the ability to knock electrons out of atoms)
	radiation	96. In humans it can cause mutations to DNA leading to cancer or can kill the cell
		97. Smoke detectors use alpha radiation
		98. Thickness monitors use beta radiation