С	С	1.	Eukaryotic cells have a nucleus, cell membrane and cytoplasm and include animal and
е	е		plant cells.
1	I	2.	Cell membrane controls the movement of substances into and out of a cell.
I	Ι	3.	Cytoplasm is a jelly like substance where reactions take place inside a cell.
В	S	4.	Respiration releases energy and takes place inside mitochondria in cells.
	t	5.	Proteins are made inside ribosomes in cells.
0	r u	6.	Cell walls are made of cellulose and give a cell structure.
0	c	7.	A vacuole stores cell sap and gives a cell structure.
g		8.	Chloroplasts contain chlorophyll used for photosynthesis.
y	u	9.	Chlorophyll absorbs light for photosynthesis.
	r		Genetic material is stored on chromosomes held in the nucleus of a cell.
	е		Prokaryotic cells, bacteria cells, have a cell membrane and cytoplasm but no nucleus.
		<u> </u>	Frokaryotic cens, bacteria cens, have a cen membrane and cytopiasm but no nucleus.
	S	12.	As a cell differentiates it develops different sub-cellular structures to enable it to carry
	р		out a particular function. It has become a specialised cell.
	e c	13.	Sperm cells are specialised for energy production with a large number of mitochondria.
	i	14.	Mesophyll cells are specialised for photosynthesis with a large number of chloroplasts.
	а	15.	Animal cells differentiate at an early stage of life.
	li	16.	Plant cells can differentiate throughout their life.
	S		
	e d		
		17.	Magnification = image size ÷ actual size
	i	18.	μm = Micrometre, nm = nanometre
	С	19.	1mm = 1000 μm
	r	20.	Light microscopes were developed first.
	0	21.	Electron microscopes give greater magnification and resolution.
	s C	22.	Electron microscopes can allow people to see more subcellular structures and develop
	0		our understanding of them.
	р		
	у		
	С	23.	Mitosis allows cells to divide for growth, repair and development of an embryo.
	e II	24.	During the three stage cell cycle
	D		a) Stage 1 – DNA is copied & number of subcellular structures, mitochondria &
	i		ribosomes are increased
	v i		b) Stage 2 – chromosomes are pulled to either end of the cell and nucleus
	S		divides
	i		c) Stage 3 – cytoplasm and cell membranes divide to form 2 genetically identical
	o n		cells.

	S t e C e I s	26. 27. 28. 29.	Stem cells are undifferentiated cells found in embryos, adult animals and meristems in plants. Stem cells from human embryos can be cloned and made to differentiate into most different types of human cells. Treatment with stem cells can be used to help diabetes and paralysis. Use of stem cells has risks, such as transfer of viral infection and religious and ethical objections about killing a potential human life. Stem cells in plants can be used to produce clones of plants quickly and economically.
	T a n s p o r t	 31. 32. 33. 34. 35. 36. 	Diffusion is the passive movement of particles from a high concentration to a low concentration. Rate of diffusion can be changed by altering concentration gradient, temperature and surface area. For multicellular organisms, surfaces and organ systems are specialised for exchanging materials. The effectiveness of an exchange surface is increased by – i. Having a large surface area ii. Thin membrane iii. Efficient blood supply (in animals) iv. Being ventilated (in animals for gas exchange) Osmosis is the passive movement of water from an area of higher water concentration to an area of lower water concentration, across a partially permeable membrane. Active transport uses energy from respiration, to transport substances across a membrane from low concentration to high concentration. Active transport is used in root hair cells and the small intestine for the absorption of nutrients.
O r g a n i s a t i o n	P r i c i p a l s	39. 40.	Cells are the basic building blocks of all living organisms. A tissue is a group of similar cells working together. An organ is a group of different tissues working together. An organ system is a group of different organs working together.

D i g e s t i v e S y s t e m	 The digestive system is an organ system. Several organs work together to digest and absorb nutrients. Enzymes are specialised proteins used in the digestive system. Enzymes are biological catalysts. Enzyme function can be described as the 'lock and key model'. The substrate binds to the active site on the enzymes. An enzyme denatures when the active site changes shape and the substrate can no longer bind to the enzyme. High temperatures and the wrong pH denature enzymes. Carbohydrase enzymes break down carbohydrates into simple sugars. Amylase is a type of carbohydrase which breaks down starch into sugars Lipase enzymes break down protein into amino acids. Bile is made in liver and stored in the gall bladder. Bile neutralises the substances from the stomach and helps to emulsify fats. Different chemicals test for different nutrient groups – a) lodine tests for starch – pale yellow to blue/black b) Benedicts tests for sugar – blue to purple d) Ethanol tests for fats – clear to cloudy
H e art & B I o o d V e s s e I s	 55. The circulatory system is made of arteries, veins, capillaries and the heart. 56. Arteries are specialised with thick elastic walls and a small lumen. 57. Capillary walls are only one cell thick, so there is a short distance for diffusion. 58. Veins have valves, thinner and less elastic walls and a larger lumen. 59. The main structure of the heart includes the aorta, vena cava, pulmonary artery, pulmonary vein, valves, atria and ventricles. 60. Heart rate is controlled by a group of cells that act as a pacemaker. 61. The pacemaker cells are located in the right atrium. 62. Blood contains red blood cells, white blood cells, platelets and plasma. i. Red blood cells destroy pathogens. ii. White blood cells destroy pathogens. iii. Platelets clot the blood. iv. Plasma is the liquid part of the blood.

	_	
Н	63.	In coronary heart disease layers of fatty material build up blocking the coronary arteries,
е		narrowing them. This reduces blood flow, resulting in a lack of oxygen for the heart so
а		less respiration.
r	64.	Stents keep coronary arteries open.
t		Statins reduce blood cholesterol level which slows down the rate of fatty material
d :		deposit.
i S	66	Heart valves may become faulty.
e		Faulty heart valves can be replaced using biological or mechanical valves.
a		Heart failure can be treated using artificial hearts or a heart transplant.
S	00.	heart failure can be treated using a thicial hearts of a heart transplant.
е		
Н	69.	Health is the state of physical and mental wellbeing.
е	70.	Communicable and non-communicable diseases are causes of ill health.
а	71.	Diet, stress, life situations can have an effect on both physical and mental health.
	72.	Non communicable diseases cannot be transmitted and are not caused by pathogens, eg
t h		diabetes, heart disease, cancer.
h I	73.	Risk factors are linked to an increased chance of getting a disease –
S		a) Obesity as a risk factor for type 2 diabeties
s		b) Effect of smoking on lung disease and lung cancer
u		c) Effects of diet, smoking and exercise on cardiovascular disease
е		d) Carcinogens as risk factors for cancer.
S		
С	74.	Cancer is caused by changes in cells leading to uncontrolled growth and division.
а	75.	Benign tumours are surrounded by a membrane and do not invade other parts of the
n		body.
С	76.	Malignant tumour cells are cancers and can spread to different parts of the body forming
е		secondary tumours.
r		

	Р	77. Plant tissues in a leaf include: epidermal tissues, palisade mesophyll, spongy mesophyll,
	I	xylem and phloem and stomata surrounded by guard cells.
	а	78. Roots are organs adapted (root hair cells to increase surface area) for uptake of water by
	n	osmosis and mineral ions by active transport.
	t t	79. Stomata and guard cells in the leaf control gas exchange and water loss.
	i	80. Phloem transports dissolved sugars up and down the plant.
	s	81. Movement of food molecules through phloem tissue is called translocation.
	s	82. Xylem transports water and mineral ions from roots to leaves.
	u	83. Transpiration is the loss of water at the leaves by evaporation.
	е	
	S	
	& 0	
	r	
	g	
	a	
	n	
	S	
I	C	84. Communicable diseases are spread by pathogens.
n f	o m	85. Pathogens are microorganisms that cause disease.
e	m	86. Pathogens may be: bacteria, viruses, fungi or protists.
C	u	87. Bacteria reproduce inside the body and produce toxins that make us feel ill.
t	n	88. Viruses reproduce inside cells causing damage to the cell and making us feel ill.
i	i	89. Viral diseases include measles and HIV in animals and tobacco mosaic virus in plants.
0	С	90. Bacterial diseases include salmonella and gonorrhoea.
n o	a h	91. Rose black spot is a fungal disease affecting plants.
& R	b	92. Malaria is caused by a protist that is spread by mosquitos.
e	e	
S	D	
р	i	
0	S	
n	е	
S	a	
е	s e	
	H	93. Non-specific defences of the human body include: skin, nose, stomach acid and cilia and
	u	mucus.
	m a	94. The immune system uses white blood cells to destroy pathogens.
	n	95. White blood cells defend against pathogens by: phagocytosis, antitoxin production and
	D e	antibody production.
	f	
	е	
	n c	
	e	

	Р	96. Vaccines contain dead or weakened pathogens.			
	r	97. Vaccination prevents illness by causing a more rapid immune response to pathogens.			
	e v	98. Transmission of pathogens can be reduced by immunising a large proportion of the			
	e	population.			
	n				
	t	99. Painkillers can be used to treat the symptoms of illness but do not kill pathogens.			
	i	100. Antibiotics kill bacteria.			
	o n	101. Antibiotics do not kill viruses as the virus is inside the cell.			
	&				
	Т				
	r				
	e a				
	t				
	m				
	е				
	n +				
	t D	102. New drugs have been extracted from plants and microorganisms.			
	r	103. The heart drug 'Digitalis' comes from foxgloves.			
	u	104. The pain killer 'Aspirin' comes from the willow tree.			
	g s				
		105. Penicillin comes from the penicillium mould.			
		106. New medical drugs have to be tested in trials to check that they are safe, effective			
		and of the correct dosage.			
		107. Preclinical testing is done in the lab using cells, tissues and animals.			
		108. Clinical trials are first done on healthy volunteers and then patients.			
		109. To reduce bias, placebos and double blind trials are used in clinical trials.			
B		110. Photosynthesis transfers light energy into chemical energy inside plants.			
	h	111. Photosynthesis is an endothermic reaction.			
	o t	112. The reactants in photosynthesis are carbon dioxide and water.			
e		113. The products of photosynthesis are glucose and oxygen.			
n e	s	114. Substances associated with photosynthesis have the following chemical symbols:			
r	y y	i. Carbon dioxide - CO_2			
	n ,	ii. Water - H ₂ O			
g e t i	t	iii. Oxygen - O ₂			
	h	iv. Glucose - $C_6H_{12}O_6$.			
	e				
с	S	115. Glucose made in photosynthesis is used for: production of cellulose cell walls,			
s	i	producing amino acids, producing fats and oils and can be stored as insoluble starch.			
	s	116. The rate of photosynthesis can be affected by: carbon dioxide concentration, light			
		intensity, temperature and the amount of chlorophyll.			

	_	
R	117.	Aerobic respiration is an exothermic reaction which takes place inside mitochondria.
е	118.	The reactants in aerobic respiration are glucose and oxygen.
S	119.	The products of aerobic respiration are carbon dioxide, water and energy.
p i	120.	The energy released in aerobic respiration is used for: movement, keeping warm and
r		chemical reactions to build large molecules.
a	121.	During exercise, heart rate, breathing rate and breath volume increases.
t	122.	Anaerobic respiration does not require oxygen.
i	123.	Anaerobic respiration produces less energy.
0	124.	Lactic acid is produced during anaerobic respiration and is toxic to the body.
n	125.	Oxygen debt is the amount of oxygen needed to break down the lactic acid produce in
		anaerobic respiration.
	126.	Anaerobic respiration in plant and yeast cells produces carbon dioxide and ethanol.
	127.	Anaerobic respiration in yeast can be used in the manufacture of bread and alcohol.
М	128.	Metabolism is the sum of all reactions inside the cells of the body.
е		Metabolism includes: production of lipid molecules, production of amino acids,
t		respiration, breakdown of excess proteins and conversion of glucose to starch and
a b		glycogen.
0		8.100,00m
li		
S		
m		