	_		
E n	Energy	1.	10 stores of energy are chemical, thermal, kinetic,
e			gravitational potential, elastic potential, nuclear, sound,
g			light, electric and magnetic
У		2.	The unit of energy is Joules (J)
		3.	Energy can be transferred from one form to another but
			can't be created or destroyed this is called conservation
			of energy
		4.	Energy input= useful energy+ wasted energy
		5.	Wasted energy is energy that is not in a useful format
			that is dissipating
		6.	Work done = force applied x distance moved
		7.	Efficiency = useful energy transferred/ total energy
			supplied by the device
		8.	Power = energy transferred to appliance / time taken
			for the energy to be transferred
		9.	An energy transfer of 1 Joule per second is equal to a
			power of 1 Watt
		10.	The more powerful the motor is the faster it moves a
			particular load.

GPE KE Elastic	11.	The equation for calculating potential energy = mass x
		gravitational field strength x change of height
	12.	The equation for calculating kinetic energy = ½ mass x
		speed ²
Efficiency	13.	Energy transfers are not 100% efficient and all
		efficiencies exist between 0-100%
	14.	Useful energy is the energy transferred into the form of
		energy that is wanted
	15.	Wasted energy is when energy is transferred into a form
		of energy that is not useful. This is often thermal store
		or sound store.
	16.	To make an appliance more energy efficient you must
		reduce the amount of wasted energy. Eg by using
		lubrication, tightening loose or moving particles and
		reducing electrical resistance
Conduction and	17.	Metals are the best conductors with a high energy
radiation		transfer and non-metals are insulators with a low
		energy transfer.

- 18. Convection is the movement of heat in fluids. The particles in the fluid become less dense when hot, rise and float. When cold the particles become denser and sink.
- 19. All hot objects radiate heat in the form of waves. There is no need for particles.
- 20. Houses are insulated to prevent energy loss and save energy resources and money.
- 21. Double glazing prevents heat loss because they have a trapped layer of gas so both conduction and convection cycles are disrupted.
- 22. Insulating panels are made of a foam and coated with foil, this reduces radiation, conduction and convection.
- 23. All objects emit and absorb radiation, the hotter the more it gives out.
- 24. The earth's temperature depends on radiation from the sun
- 25. Increasing the number of layers of insulation decreases thermal transfer so the temperature loss is less.

	26. Materials with trapped layers of air are good insulators
	because heat does not transfer well between solids
	and gases.
Specific heat	27. The specific heat capacity of a substance is the amount
capacity	of energy needed to raise the temperature of 1kg of
	substance by 1 °C
	28. Specific heat capacity can be calculated experimentally
	by using an electrical heater to heat a kg block of metal.
Energy resources	29. Electricity can be generated from by using to steam to
	turn a turbine which powers a generator
	30. Coal, oil, gas (non – renewable fossil fuels) and biofuels
	(renewable) are burnt to heat water
	31. Nuclear sources such as uranium can be used to heat
	water (non- renewable)
	32. Geothermal energy, wind, solar, tidal, hydroelectric are
	renewable energy sources
	33. Coal, oil gas and biofuels all produce carbon dioxide or
	greenhouse gasses when burnt. The others do not.

E	Static Electricity	4. Static electricity is the force between two charged	
e c		objects	
t		5. Some insulators become charged when rubbed	
i		together	
i		6. Charge is the transfer of electrons. Gain electrons =	
t y		negative charge. Loss of electrons = positive charge	
		7. Like charges repel, opposite charges attract	
		8. A static shock occurs when there is potential	
		difference between the charged object and the earth.	
	The basics	9. Each circuit has its own symbol that can be used to	1
		show the components in a circuit.	
		0. A battery is two or more cells put together	
		1. Current is the rate of flow of charge and is measured in	
		amps Current (I) = charge (Q) ÷time (t)	
		2. Potential difference is measured in volts Potential	
		difference (V)= energy transferred (E) ÷ charge (Q)	
	Series circuits	3. In series circuits, current is the same, voltage is shared	
		4. In series circuits, resistance adds up	

<u>Paper 1 Physics Fact Sheet – Triple</u>

Bold – Triple content /tal

Italics – higher only

Parallel circuits	45. In parallel circuits, current is shared between the
	branches and the sum of all branches is the total
	current, voltage is the same
	46. In parallel circuits, adding more resistors in a parallel
	circuit decreases the total resistance.

E	Resistance	47.	Resistance is measured in Ohms (Ω)
e		48.	Higher resistance, lower current, higher temperature
t		49.	Total resistance adds up in a series circuit, it decreases
r i			in a parallel circuit
C i		50.	Resistance (Ω) = potential difference (V) ÷ current
t y			(Amps)
c o		51.	In a wire the as the current increases so does the
n t			voltage. Resistance is proportional
i n		52.	In a filament bulb resistance increases if the
u e			temperature increases
d		53.	In a diode the forward resistance is low the backward
			resistance is high
		54.	A thermistors resistance decreases if its temperature
			increases
		55.	A LDR resistance decreases if the light intensity on it
			increases

•		
Electricity in the home	56.	Alternating current changes direction
	57.	Mains current is alternating, has a Potential Difference
		of 230 V and a frequency of 50 Hz
	58.	Direct current flows in one direction only. From
		batteries and photovoltaic cells.
	59.	A 3 pin plug has three wires: brown is live, blue is
		neutral, green and yellow striped is the earth wire
	60.	The earth wire protects against electric shocks if there is
		a fault
	61.	The fuse is attached to the live wire and melts if the
		current gets too high
	62.	The fuse ratings are 3, 5 and 13. Choose the fuse that is
I	1	

higher than the current needed.

National Grid	63.	The national grid includes the power generation station,
		the cables and transformers that distribute electricity
		around the country
	64.	Step up transformers step up the voltage and therefore
		decrease the current. Step down transformers step
		down voltage and therefore increase the current.
	65.	This reduces heat loss in the cables and increases
		efficiency
	66.	Using thick wires also increases efficiency as thicker
		wires have a lower electrical resistance.
Power	67.	The power of an electrical appliance is the rate at which
		electricity is transferred to the appliance or using the
		equation power = energy/time
	68.	Power is also calculated by the equation power =
		current x potential difference

M	Density	69.	Density $(kg/m^3) = mass (kg) \div volume (m^3)$
ı		70.	The density of a regular object can be calculated
c			mathematically.
u I		71.	Volume of an irregular object can be measured by
e s			submerging it in water and measuring the amount of
a n			water displaced
d m a		72.	Objects that have a lower density than water float.
t	States of matter	73.	Particles in solids have strong attractive forces and are
t e			held in a fixed position. They do not compress or flow
r		74.	Particles in a liquid have moderate attractive forces they
			are always in contact but can move about at random.
			They do not compress but can flow
		75.	Particles in a gas have weak attractive forces, they move
			about randomly can be compressed and flow. They are
			the least dense.
		76.	When an object changes state the number of particles
			stays the same.

Changes of state	77.	A pure substance has a specific melting and boiling
		noint

- point

 78. Boiling occurs throughout a substance at its boiling
- 78. Boiling occurs throughout a substance at its boiling point. Evaporation occurs from the surface of the liquid below the boiling point.
- 79. Changes of state are flat lines on a temperature time graph
- 80. Increasing the temperature increases the internal energy and allows a substance to change state
- 81. Specific latent heat of vaporisation is the amount of energy needed to turn 1kg of a substance from liquid to a gas
- 82. Specific latent heat of fusion is the amount of energy need to turn 1kg of a substance from a solid to a liquid.

		pressure x volume = constant ρv=constant
	90.	For a fixed mass of gas held at a constant temperature:
		temperature
	89.	Pressure increases if volume decreases at a constant
		can be seen in smoke.
	88.	Brownian motion is the random movement of particles
		pressure as the particles move faster
	87.	Increasing the temperature of a contained gas increases
		hitting the container or surfaces
Gas pressure	86.	The pressure of a gas is caused by random particles
		the internal energy
	85.	Increasing the temperature of the substance increase
		high kinetic energy and high potential energy
	84.	Gases have high internal energy as the particles have
		of the particles
		kinetic energy of the particles and the potential energy
Internal energy	83.	The internal energy of a substance is determined by the

<u>Paper 1 Physics Fact Sheet – Triple</u>

Bold – Triple content

Italics – higher only

R	Atoms	1. Positive nucleus (protons and neutrons) surrounded	by
d		negative electrons in shells, discovered by Rutherfor	d.
0		2. Rutherford disproved plum pudding model by firing	
c		alpha particles at gold foil. The wide scattering patte	rn
t i		suggested the nucleus	
i		3. Electrons can jump to a higher energy level (further	
t y		from the nucleus) with absorption of electromagnet	ic
		radiation	

Radiation

- 94. Alpha radiation α (a helium nuclei or loss of two protons and two neutrons) highly ionising, low penetration, stopped by paper, range in air 5 cm
- 95. Alpha equations atomic mass decrease by 4, atomic number decrease by 2
- 96. Beta radiation β (electron formed when a neutron turns into a proton) mid ionising ability and mid penetration, stopped by aluminium, range in air 1 metre
- 97. Beta equations atomic mass no change atomic number increase by 1
- 98. Gamma radiation γ (EMS wave) low ionising ability, high penetration, stopped by several inches of lead or metres of concrete, range in air unlimited
- 99. Background radiation is low-level radiation.
- 100. Contamination us the unwanted presence of materials containing radioactive atoms on other materials. The object is radioactive as long as the contaminant is in contact with it.

<u>Paper 1 Physics Fact Sheet – Triple</u>

Bold – Triple content

Italics – higher only

	101. Irradiation is the process of exposing an object to
	nuclear radiation. It does not cause the object to
	become radioactive.
Half life	102. Half-life is the amount of time it takes for the number
	of nuclei of the isotope to halve
	103. The number of atoms and count rate both half every
	half-life
	104. It can be read of a half-life graph
	105. The half-life of carbon 14 is used to age living things

Use of radiation	106. Radiation is harmful because it is ionising (the ability to
	knock electrons out of atoms)
	107. In humans it can cause mutations to DNA leading to
	cancer or can kill the cell
	108. Smoke detectors use alpha radiation
	109. Thickness monitors use beta radiation
	110. Medical uses of radiation can be used to explore
	internal organs and control or destroy unwanted
	tissues.
	111. Gamma radiation can be used to kill cancer cells
	112. Beta or gamma can be used as a tracer the half-life
	must be long enough to detect but not too long
	113. Natural sources of background radiation include
	cosmic rays (12.5%), food and drink (12.5%), rocks and
	buildings (12.5%), and radon gas (50%).
	114. Man-made sources (12.5%) of radiation come from
	nuclear fallout from weapon tests, nuclear disasters,
	and medical uses.

Fission	115. Fission is the splitting of an atomic nucleus into two
	smaller nuclei and two or more neutrons releasing
	energy
	116. In nuclear power stations this is induced in
	uranium-235or plutonium-239by firing a neutron at it.
	117. This is a chain reaction as the released neutrons
	trigger more atoms to decay
	118. Nuclear waste is difficult to dispose of as it is
	radioactive
	119. Nuclear fallout from a power station can make an area
	uninhabitable (such as Chernobyl)
Fusion	120. Fusions causes two atoms to combine releasing vast
	amounts of energy
	121. Fusion happens naturally in star when hydrogen fuses
	to form helium
	122. On earth this can be attempted at very high
	temperatures 7 million degrees.