Knowledge Retrieval Booklet

GCSE Computer Science (9-1)
J277/02 - Computational thinking, algorithms and programming.

Name:
Class:
Date:

2.1.1 Computational thinking

Lesson 1

Activity 1

Complete the concept map below (1 point each)

Activity 2

Identify the key terms for the descriptions shown below. (1 point each)

The removal of unnecessary elements so that the important points remain.	When a complex problem is broken down into smaller sub-tasks to make it easier to solve.	A list of instructions designed to solve a problem.	The process of spotting regularities/similarities in data.

2.1.2 Designing, creating and refining algorithms

Lesson 2

Activity 1

Complete the concept map below (1 point each)

Activity 2

Name each flow chart symbol shown below (1 point each)

Activity 3

Name the three programming constructs (1 point each)

Activity 4

Complete the match them up activity. (1 point each)

1. Pseudocode
2. Flow charts
3. Syntax errors
4. Logic errors
5. Trace tables
6. High-level language

A. Code is written that doesn't fit in with the rules of the language.
B. A diagram that depicts a process, system or computer algorithm.
C. Used to allow programmers to follow the value of variables as each line of code is executed.
D. A plain language description of the steps in an algorithm.
E. Written in a form that is close to our human language.
F. The program will appear to be working however, it might do what it's intended to do.

2.1.3 Searching and sorting algorithms

Lesson 3

	Last lesson (1 point)
	Two lessons ago (2 points)

Activity 1:
What can you remember so far?

Name one computational thinking method	Name one computational thinking method	Name one programming construct	Name one programming construct	Name one common error found when writing code.
Name one programming construct	Name one computational thinking method	Name one common error found when writing code.	Name one computational thinking method	Name two ways of constructing an algorithm

Activity 2

Name these two searching algorithms based on the diagrams shown below (1 point each)

2, 3, 5, 6, 9, 11, 13, 15	$2,3,5,6,9,11,13,15$	2	3	5	6	9	11	13	15
2, 3, 5, 6, 9, 11, 13, 15	$2,3,5,6,9,11,13,15$								
			9		11	13			
$2,3,5,6,9,11,13,15$	2, 3, 5, 6, 9, 11, 13, 15					15			

Activity 3

Name these three sorting algorithms based on the diagrams shown below (1 point each)

2.2.1 Programming fundamentals

Lesson 4

Activity 1
Name what each of these arithmetic operators represent (1 point each)

Operator	Python representation	Meaning
+		
-		
$*$		
$/$		
DIV		
\wedge		
MOD		

Activity 2:
Name what each of these comparison operators represent. (1 point each)

Operator	Meaning
$==$	
$!=$	
$>$	

$<$	
$=>$	
$<=$	

Total points

2.2.2 Data types

Lesson 5

Activity 1

How much can you remember?

| | Last lesson
 (1 point) | Two lessons
 ago (2
 points $)$ | Three
 lessons ago
 $(3$ points $)$ | Four
 lessons ago
 (4 points) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Name three sorting algorithms	Name one programming construct	Name four computational thinking methods.	Name one programming construct
Name two ways of constructing an algorithm	Name one comparison operator	What does ^ represent?	What does MOD represent?
Name one comparison operator	Name two searching algorithms	Name one comparison operator	Name one programming construct

Activity 2

Name the data types based on the examples shown below (1 point each)

Example	Data type
"Hello"	
23	
TRUE	

3.12	
"C"	

Activity 3
Complete the missing words in this statement (1 point each)
___ means changing the data type of a piece of data from one type to another. The data may be stored inside a \qquad -.

Total points	

2.2.3 Additional programming techniques (Part 1)

Lesson 6

Activity 1

Complete the concept map below. The keywords have been provided (1 point each)

Condition- Controlled iteration	Counter-co ntrolled iteration	FOR loop	IF statement	Iteration	Selection	Sequence	WHILE loop

Activity 2
Look at the code below and identify the output. (1 point each)

Name $=$ "Antonia"	
Name.substring $(0,1)$	
Name $=$ "Antonia"	
Name.substring $(1,4)$	
Name $=$ "Antonia"	
Name.upper()	
Name $=$ "Antonia"	
Name.length	
Name $=$ "Antonia"	
Name.substring $(0,-2)$	

Total points	

2.2.3 Additional programming techniques (Part 2)

Lesson 7

Activity 1:
What can you remember so far?

1 lesson ago $(1$ Point $)$	2 lessons ago (2 Points)	3 lessons ago (3 points)	4 lessons ago (4 points)	5 lessons ago (5 points)	6 lessons ago (6 points)

Name three sorting algorithms	Name two searching algorithms	Name four computational thinking methods	What term is used to describe the conversion from one data type to another?
Which function checks the length of a string?	Name three arithmetic operators	Name two common types of error found when writing code.	Name two ways of constructing an algorithm
Name four data types	Name three comparison operators	Name three programming constructs	What command is used to take part of a string?

Activity 2

Completing the missing line of code in each case shown in the table below (1 point each)

Command	Code
Reading an existing text file.	F =open("File.txt"__)
Writing a new text file	F =open("File.txt"__)
Updating an existing text file	F =open("File.txt" ___)
Create a specified file.	F =open("File.txt"__)
Closing a text file (Double points)	F =open("File.txt","r")

Total points

2.2.3 Additional programming techniques (Part 3)

Lesson 8

Activity 1

Complete the concept map below where it says 'examples' (1 point each)

Activity 2
Match up the keywords with the definition (1 point each)

1. Primary Key
2. Field

A. This SQL command will request fields that they want to appear in the final results.
B. This is a field that will uniquely identify a record and removing any duplicates.

3.	Record
4.	SELECT
5.	FROM
6.	WHERE

C. This SQL command will request specific information from the selected fields.
D. A category of data
E. An individual set of data.
F. This SQL command means the source in which the information came from.

Activity 3

Look at the table below. Identify which Product No(s) will be output based on the following SQL statements. (1 point each)

Product No.	Registration	Make	Year	Mileage	Price
0001	AV60 HES	Peugeot	2010	33156	$£ 5,500$
0002	GF56 RTE	Toyota	2006	26875	$£ 8,500$
0003	FD02 YOU	Hyundai	2002	85300	$£ 3,499$
0004	AD62 HGF	Peugeot	2012	50887	$£ 7,649$
0005	AF63 THE	Peugeot	2013	45860	$£ 6,780$
0006	GF64 NGB	Renault	2014	38665	$£ 6,199$
0007	GR11 JUL	Renault	2011	90760	$£ 2,999$

SQL Command	Output
SELECT * FROM Cars WHERE Make $=$ Toyota	
SELECT * FROM Cars WHERE Mileage >40000	
SELECT * FROM Cars WHERE Make $=$ Peugeot AND Price <7000	

Total points

2.2.3 Additional programming techniques (Part 4)

Lesson 9

Activity 1:
What can you remember so far?

| | $1-2$ lessons ago.
 (1 point) | $3-4$ lessons ago
 (2 points) | $5-6$ lessons ago
 (3 points) | $7-8$ lessons ago
 (4 points) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Name two searching algorithms	Name three SQL commands	Name four arithmetic operators	Name four comparison operators
Name four data types	Name two ways of constructing algorithms	Name three file handling commands	Name three sorting algorithms
Name four computational thinking methods	What term is used to describe the conversion from one data type to another?	Name three programming constructs	How do you convert a string contained words into capital letters?

Activity 2

Using the array shown below, identify what will the output will be from the snippets of code shown below. (1 point each)

Names	Sam	Jessica	David	Gemma	Dom

Code	Output
print (Names[2])	
print(len(Names))	
Names[0] $=$ "Jake" print(Names)	
Names.append("Charlie") print(Names)	
Names.pop(3) print(Names)	
Names.sort() print(Names)	

Total points

2.2.3 Additional programming techniques (Part 5)

Lesson 10

Activity 1

Using the code below, decipher to identify these three key terms below. (1 point each)

A	B	C	D	E	F	G	H	I	J	K	L	M	O	N	P	Q	R	S	T	U	V	W	X	Y	Z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

9	20	5	18	1	20	9	14	15

Activity 2

Re-arrange the anagrams below to reveal three key terms related to subprograms. The descriptions have been provided. (1 point each)

conunfit	coperrude	armrepeat
A subprogram that can return a result based on its defined parameters.	A subprogram that will not return a result, but information can still be passed through it.	A special variable used within a function to return a result.

Activity 3

Re-arrange the order of this function from $1=$ start to $5=$ finish

Snippet	Orde \mathbf{r}
Call the function and input value as a parameter	
Return the value	
End the function	
Create the function and set a parameter.	

Total points	

2.3.1 Defensive design

Lesson 11

Activity 1:

What can you remember so far?

| | Last week
 (1 point) | $2-4$ weeks ago
 (2 points) | $5-8$ weeks ago
 $(3$ points $)$ | 9-10 weeks ago
 (4 points) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Name the subprogram that can return a result.	Name three programming constructs	Name four arithmetic operators	Which command allows you to add an item to an existing array?
Name three SQL commands.	Name four comparison operators	Name the subprogram that cannot return a result.	Which arithmetic operator will display the remainder of an

			equation which isn't equally divisible?
Name five data types	Name three file handling commands.	What term is used to describe one data type being converted to another?	Name three sorting algorithms and two searching algorithms.

Activity 2

Use the images below and label the different methods of authentication. (1 point each)

Total points	

2.3.1 Defensive design (Part 2)

Lesson 11

Activity 1:
Name three ways to maintain code (1 point each)

Activity 2

Complete the crossword shown below (1 point each)

Across
2 Used to check data entered is the appropriate data type
3 Used to check if the data enter has sufficient amount of characters.
4 Used to verify whether a sequence of numbers have been entered correctly.
5 Used to check the quality of written communication in a document.
6 Used to check whether data entered fits within a set criteria.
7 Could be used to find the date and time on an online entry form.

Total points

2.3.2 Testing

Lesson 12

Activity 1

How much can you remember? (1 point each)

Name one way of maintaining code.	Name two searching algorithms	Name three programming constructs	Name four computationa I thinking methods	Name five data types	Name six arithmetic operators	Name seven data validation methods

Look at the code and completed test table below. Identify what types of test data have been used. (1 point each)

```
#Guess the number challenge
import random
Answer = random.randint(1,100) #Random number between 1 and a 100.
score = 1 # Record number of guesses
guess = int(input("Enter a number between 1 and a 100"))
while guess != Answer: #While user guesses incorrectly.
    if guess < Answer: #Indicates whether they are too high or low.
        print("Too low")
    elif guess > Answer:
        print("Too high")
    elif guess == Answer:
        print("Correct")
    else:
        print("Out of range")
    score = score + 1 #Adds to guesses
    guess = int(input("Please enter a number between 1 and 100"))
|
print("Well done, it took you",score,"guesses") #Prints out the total
```

Test No.	Description	Test data	Expected outcome	Actual outcome
$\mathbf{1}$	Test 54 as it's well within the specified range.		Program should work as intended.	Program does work as intended.
2	Test 1 as it's just inside the range.		Program should work as intended.	Program does work as intended.
3	Test 234 as it's just outside the range.		Program should not work as intended.	Program does not work as intended.
4	Test using the word Apple as it's not a number.		Program should not work as intended.	Program does not work as intended.

Activity 3:

Complete the missing gaps in the paragraph below. (1 point each)
\square
takes place during the development of the program. Whereas,
takes place when the development of the code is complete.

Total points	

2.4.1 Boolean logic

Lesson 13

Activity 1

How much can you remember?

| Last week
 (1 point) | 2 weeks ago
 (2 points) | 3 weeks ago
 (3 points) | 4 or more weeks
 ago
 (4 points) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Name four types of test data	Name three methods of authentication	Name three types data validation checks.
Name four ways of maintain code.	Name two subprograms	Name three programming constructs
Name five data types.	Name two searching algorithms	Name three sorting algorithms

Activity 2

Complete the table below (1 point each)

Total points

2.5.1 Languages

Lesson 14

Activity 1

Complete the concept map below. (1 point each)

Activity 2

Name the languages shown in the table below and identify whether it is a high-level or low-level programming language (1 point each)

00001101010110000110	ADD 3 STA 4 HLT	print ("Hello world") print ("My name is Bob")
Language:	Language:	Language:
High-level or Low-level?	High-level or Low-level?	High-level or Low-level?

Activity 3

Tick whether each statement relates to an interpreter or a compiler. (1 point each)

Statement	Interpreter	Compiler
Translates and execute one line of source code at a time.		
Instead of stopping at the first error, it will generate a list of errors (if any) all at once.		
If a line contains an error - then the program will stop at that line and go no further.		
Translates all of the code in one batch, instead of line by line.		
Code must be translated each time it's run		
Code will run faster.		

Total points	

2.5.2 The Integrated Development Environment (IDE)

Lesson 15

Activity 1

Complete the structure diagram shown below (1 point each)

Use these key terms:

- Compiler
- Interpreter
- Source code
- Source code
- Machine code

Activity 2

Name the IDE features based on the descriptions provided below. (1 point each)

Allows code to be inspected for errors with suggestions on where the problem lies.	Automatically indents the next line if required.	Displays source code in different colours so certain commands in orange, functions in purple etc..	It highlights matching sets to identify whether you've used the correct number of open and closed brackets.

Total points

Final Challenge!
Score as many points as you can.

Name four IDE features (1 point)	Name two high-level language translators (2 points)	Name three logic gates (3 points)	List the three notations used to represent each logic gate (3 points)
Name two types of testing (4 points)	Name four types of test data (4 points)	Name seven data validation methods (5 points)	Name four ways to maintain code (5 points)
Name four methods use for authentication (5 points)	Name two types of subprograms (6 points)	Name one data structure you've studied that allows you to store multiple items under one identifier. (7 points)	Name three SQL commands (8 points)
Name four file handling commands (9 points)	Name two ways of manipulating a string (10 points)	Name five data types (11 points)	Name three logical operators (12 points)
Name all the comparison operators (13 points)	Name all the arithmetic operators (13 points)	Name two searching algorithms (14 points)	Name three sorting algorithms (14 points)
Name two commons error that occur when writing code (15 points)	Name three programming constructs (15 points)	Name two types of iteration (15 points)	Name four computational thinking methods (16 points)

